Far out cosmology: neutrinos still confusing (Introduction)

by David Turell @, Monday, March 13, 2023, 19:06 (411 days ago) @ David Turell

They still don't fit into the standard model:

https://www.sciencenews.org/article/ghost-particle-neutrino-discovery-learn

"...much about the neutrino — named in part because it has no electric charge — remains a mystery, including how many varieties of neutrinos exist, how much mass they have, where that mass comes from and whether they have any magnetic properties.

***

"It’s not just neutrino physicists who await those answers. Neutrinos, Riordon says, “are incredibly important both for understanding the universe and our existence in it.” Unmasking the neutrino could be key to unlocking the nature of dark matter, for instance. Or it could clear up the universe’s matter conundrum: The Big Bang should have produced equal amounts of matter and antimatter, the oppositely charged counterparts of electrons, protons and so on. When matter and antimatter come into contact, they annihilate each other. So in theory, the universe today should be empty — yet it’s not (SN: 9/22/22). It’s filled with matter and, for some reason, very little antimatter.

***

SN: "In the first chapter, you list eight unanswered questions about neutrinos. Which is the most pressing to answer?

Riordon: "Whether they’re their own antiparticles is probably one of the grandest. The proposal that neutrinos are their own antiparticles is an elegant solution to all sorts of problems, including the existence of this residue of matter we live in. Another one is figuring out how neutrinos fit in the standard model [of particle physics]. It’s one of the most successful theories there is, but it can’t explain the fact that neutrinos have mass.

Riordon: "All of these questions about neutrinos are sort of coming to a head right now — the hints that neutrinos may be their own antiparticles, the issues of neutrinos not quite fitting the standard model, whether there are sterile neutrinos [a hypothetical neutrino that is a candidate for dark matter]. In the next few years, a decade or so, there will be a lot of experiments that will [help answer these questions,] and the resolution either way will be exciting.

SN: "Neutrinos could also be used to help scientists observe a range of phenomena. What are some of the most interesting questions neutrinos could help with?

Riordon: "There are some observations that simply have to be done with neutrinos, that there are no other technological alternatives for. There’s a problem with using light-based telescopes to look back in history. We have this really amazing James Webb Space Telescope that can see really far back in history. But at some point, when you go far enough back, the universe is basically opaque to light; you can’t see into it. Once we narrow down how to detect and how to measure the cosmic neutrino background [neutrinos that formed less than a second after the Big Bang], it will be a way to look back at the very beginning. Other than with gravitational waves, you can’t see back that far with anything else. So it’ll give us sort of a telescope back to the beginning of the universe."

Comment: so the last chapter for the standard model will be understanding much more about neutrinos. Perhaps it will help dhw understand why the universe is so big.


Complete thread:

 RSS Feed of thread

powered by my little forum