Biological complexity: walking along filament (Introduction)

by David Turell @, Wednesday, January 04, 2017, 14:54 (2661 days ago) @ David Turell

It is found that a walking protein can be bi-directional"

http://phys.org/news/2017-01-scientists-molecular-motor-gear.html

"The research revealed a totally unexpected behavior about a "motor" protein that functions as chromosomes are segregated during cell division.

"Motor proteins are tiny molecular machines that convert chemical energy into mechanical work. They are the miniature "vehicles" of a cell, and move on a network of tracks commonly referred to as the cytoskeleton. They shuttle cellular cargos between locations and generate forces to position chromosomes. But in spite of intensive research efforts over many years, mechanisms underlying the actions of many motor proteins are still unclear.

"In this study, researchers focused on a particular motor protein, called KlpA, and used a high-sensitivity light microscopy method to directly follow the movement of individual KlpA molecules on the cytoskeleton track. They discovered that KlpA is able to move in opposite directions - an unusual finding. KlpA-like motor proteins are thought to be exclusively one-way vehicles.

"The researchers also discovered that KlpA contains a gear-like component that enables it to switch direction of movement. This allows it to localize to different regions inside the cell so it can help ensure that chromosomes are properly divided for normal cell division.

"'In the past, KlpA-like motor proteins were thought to be largely redundant, and as a result they haven't been studied very much," Qiu said.

"Qiu and colleagues say they are excited about their future research, which may uncover the design principle at the atomic level that allows KlpA to move in opposite directions. And there may be other applications.

"'KlpA is a fascinating motor protein because it is the first of its kind to demonstrate bidirectional movement," Qiu said. "It provides a golden opportunity for us to learn from Mother Nature the rules that we can use to design motor protein-based transport devices. Hopefully in the near future, we could engineer motor protein-based robotics for drug delivery in a more precise and controllable manner.'"

Comment: Cell division requires precise engineering so that each copy is made correctly without error. Such engineering requires a superb engineer, not chance construction. How much cell complexity discovery does it take before one recognizes that natural evolutionary process cannot create this degree of cellular complexity?


Complete thread:

 RSS Feed of thread

powered by my little forum